Abnormal glomerular permeability characteristics in diabetic nephropathy: implications for the therapeutic use of low-molecular weight heparin.
نویسندگان
چکیده
The physicochemical characteristics of the glomerular capillary filtration membrane restrict the passage of macromolecules on the basis of molecular weight, charge, and shape. The proposed ionic charge permselectivity characteristics of the glomerular basement membrane (GBM) are determined by its chemical composition, primarily the highly sulfated glycosaminoglycan heparan. In diabetic nephropathy, the heparan sulfate content of the GBM is diminished. It has been proposed that decreased GBM heparan sulfate content causes decreased permselectivity to negatively charged macromolecules such as albumin, allowing this protein to leak into the urinary space. One possible explanation for decreased GBM heparan sulfate content in diabetic nephropathy is the observation that heparanase, an enzyme capable of degrading heparan sulfate, is upregulated in the glomerular epithelial cell (GEC) in response to increased glucose. Increased GEC heparanase activity has been demonstrated in glomeruli in diabetic kidneys, and increased urine heparanase has been observed in diabetic nephropathy. In vitro studies have shown that GEC heparanase activity depends on the glucose concentration of the culture medium. GEC heparanase activity can be inhibited by heparin compounds. Sulodexide, an orally active low-molecular weight heparin, has been shown to lower urine albumin excretion. The working hypothesis that has emerged is that sulodexide may be an in vivo heparanase inhibitor that reaches the glomerular capillary wall and prevents heparan sulfate degradation, thus allowing reconstruction of heparan sulfate content and restoration of GBM ionic permselectivity. Two clinical trials are currently being carried out to determine whether sulodexide is renoprotective in diabetic nephropathy.
منابع مشابه
Effect of sulphated glycosaminoglycans on albuminuria in patients with overt diabetic (type 1) nephropathy.
Decreased expression of heparan sulphate has been shown in the glomerular basement membrane of patients with over diabetic nephropathy. Low- molecular-weight heparin (LMWH) is a highly sulphated glycosaminoglycan with strong structural and functional similarities to heparan sulphate. In a first study, we set out to assess if LMWH could decrease the urinary albumin excretion rate (AER) in diabet...
متن کاملRAGE control of diabetic nephropathy in a mouse model: effects of RAGE gene disruption and administration of low-molecular weight heparin.
Diabetic nephropathy is a major microvascular complication in long-standing diabetic patients who eventually undergo renal dialysis or transplantation. To prevent development of this disease and to improve advanced kidney injury, effective therapies directed toward the key molecular target are required. In this study, we examined whether inhibition of the receptor for advanced glycation end pro...
متن کاملLow Molecular Weight Heparin Overdose: A 10 Year Case Series
Background: Low molecular weight heparin (LMWH) is used for the treatment and prevention of coagulative disorders. Few patients receiving therapeutic doses of LMWH develop major hemorrhage. Currently there are few reports in the literature on acute overdose on adults. In this study, clinical profile, treatment and outcome of 21 patients who acutely overdosed enoxaparin are described. Method...
متن کاملSalvianolic Acid A Protects Against Diabetic Nephropathy through Ameliorating Glomerular Endothelial Dysfunction via Inhibiting AGE-RAGE Signaling.
BACKGROUND/AIMS Glomerular endothelium dysfunction leads to the progression of renal architectonic and functional abnormalities in early-stage diabetic nephropathy (DN). Advanced glycation end products (AGEs) and receptor for AGEs (RAGE) are proved to play important roles in diabetic nephropathy. This study investigated the role of Salvianolic acid A (SalA) on early-stage DN and its possible un...
متن کاملEarly Renal Histological Changes in Alloxan-Induced Diabetic Rats
Diabetes mellitus is a progressive disease. Most investigators have focused on glomerular changes in diabetic kidney and non-glomerular alterations have been less attended. The present study has been conducted to find early non-glomerular histological changes in diabetic renal tissue. Twenty male Wistar rats weighting 200-250 g were used for the diabetic group. Diabetes mellitus was induced by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes care
دوره 31 Suppl 2 شماره
صفحات -
تاریخ انتشار 2008